B.A/B.Sc 6th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH6 CC 13 (Metric Spaces and Complex Analysis)

Time:3 Hours

Full Marks: 60

 $6 \times 5 = 30$

5

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any six questions:

- (a) Prove that a compact metric space is complete.
- (b) Prove that a metric space (X, d) is disconnected if and only if there exists a continuous function f: X → {0,1}, which is onto.
- (c) (i) Prove that for any two distinct points x, y in a metric space (X, d) there exist two open sets U and V in X containing x and y respectively such that $U \cap V = \phi$
 - (ii) Give an example with justification of a non-trivial map f from a metric space onto itself which have infinitely many fixed points. 3+2
- (d) Let (X,d) and (Y,ρ) be two metric spaces. Prove that a mapping $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for every $A \subseteq X$.
- (e) (i) Evaluate $\int_{\gamma} \frac{e^{2z}}{(z+1)^4} dz$, where $\gamma = \{z \in \mathbb{C} : |z| = 3\}$
 - (ii) Examine the convergence of the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, where $z \in \mathbb{C}$. 3+2
- (f) Show that $u(x, y) = e^x (x \cos y y \sin y)$ satisfies Laplace equation and find its harmonic conjugate function v(x, y) so that f(z) = u(x, y) + iv(x, y) is analytic, where $z \in \mathbb{C}$ 2+3
- (g) State and prove Liouville's Theorem.
- (h) (i) Let (X, d) be a metric space and A be a non-empty subset of X. Suppose $f: X \to \mathbb{R}$ be given by $f(x) = d(x, A), x \in X$. Show that f(x) = 0 if and only if $x \in \overline{A}$.
 - (ii) Prove that $\arg z \arg(-z) = \pm \pi$ according as $\arg z$ is positive or negative, where $z \in \mathbb{C}$ 3+2

1 + 4

2. Answer any three questions:

- (a) (i) State and prove Banach Contraction Principle.
 - (ii) Let (X, ρ) and (Y, σ) be two metric spaces and $f: (X, \rho) \to (Y, \sigma)$ be a uniformly continuous function. If $\{x_n\}$ is a Cauchy sequence in (X, ρ) then show that $\{f(x_n)\}$ is also a Cauchy sequence in (Y, σ) . (1+5)+4
- (b) (i) Prove that a metric space (X, ρ) is complete if for every descending sequence of non-empty closed sets {C_n} in (X, ρ) with diam(C_n)→0 as n→∞, the intersection
 C = ∩ C_n consists of single point only.
 - (ii) If A is a connected set in a metric space (X, ρ) and $A \subseteq B \subseteq \overline{A}$ then show that B is connected and hence show that \overline{A} is connected. 5+(3+2)
 - (c) (i) Let (X, ρ) and (Y, σ) be two metric spaces and $f: (X, \rho) \to (Y, \sigma)$ be a continuous function. If $K \subseteq X$ is a compact set in (X, ρ) then prove that f(K) is a compact set in (Y, σ) . Hence show that a surjection $f: [a,b] \to C(C \subseteq \mathbb{R})$, where *C* is not closed in \mathbb{R} , cannot be continuous.
 - (ii) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and suppose |f'(x)| < 1 on \mathbb{R} . Show that f is a contraction map on \mathbb{R} . (4+3)+3
- (d) (i) Let f = u + iv be a differentiable function on a region $G \subset \mathbb{C}$. If f(G) is a path of a circle in \mathbb{C} , show that f is constant.
 - (ii) Prove that every non-constant polynomial with complex coefficients has a zero in the field of complex numbers.

(e) (i) Find the Laurent series expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ in $2 < |z| < \infty$. (ii) By contour integration show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$. 4+6