B.A/B.Sc 6 ${ }^{\text {th }}$ Semester (Honours) Examination, 2020 (CBCS)
 Subject: Mathematics
 Course: BMH6 CC 13
 (Metric Spaces and Complex Analysis)

Time:3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

(a) Prove that a compact metric space is complete.
(b) Prove that a metric space (X, d) is disconnected if and only if there exists a continuous function $f: X \rightarrow\{0,1\}$, which is onto.
(c) (i) Prove that for any two distinct points x, y in a metric space (X, d) there exist two open sets U and V in X containing x and y respectively such that $U \cap V=\phi$
(ii) Give an example with justification of a non-trivial map f from a metric space onto itself which have infinitely many fixed points.
(d) Let (X, d) and (Y, ρ) be two metric spaces. Prove that a mapping $f: X \rightarrow Y$ is continuous if and only if $f(\bar{A}) \subset \overline{f(A)}$ for every $A \subseteq X$.
(e) (i) Evaluate $\int_{\gamma} \frac{e^{2 z}}{(z+1)^{4}} d z$, where $\gamma=\{z \in \mathbb{C}:|z|=3\}$
(ii) Examine the convergence of the series $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, where $z \in \mathbb{C}$.
(f) Show that $u(x, y)=e^{x}(x \cos y-y \sin y)$ satisfies Laplace equation and find its harmonic conjugate function $v(x, y)$ so that $f(z)=u(x, y)+i v(x, y)$ is analytic, where $z \in \mathbb{C} \quad 2+3$
(g) State and prove Liouville's Theorem. $1+4$
(h) (i) Let (X, d) be a metric space and A be a non-empty subset of X. Suppose $f: X \rightarrow \mathbb{R}$ be given by $f(x)=d(x, A), x \in X$. Show that $f(x)=0$ if and only if $x \in \bar{A}$.
(ii) Prove that $\arg z-\arg (-z)= \pm \pi$ according as $\arg z$ is positive or negative, where $z \in \mathbb{C}$
2. Answer any three questions:
(a) (i) State and prove Banach Contraction Principle.
(ii) Let (X, ρ) and (Y, σ) be two metric spaces and $f:(X, \rho) \rightarrow(Y, \sigma)$ be a uniformly continuous function. If $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, ρ) then show that $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence in (Y, σ).
$(1+5)+4$
(b) (i) Prove that a metric space (X, ρ) is complete if for every descending sequence of nonempty closed sets $\left\{C_{n}\right\}$ in (X, ρ) with $\operatorname{diam}\left(C_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, the intersection $C=\bigcap_{n=1}^{\infty} C_{n}$ consists of single point only.
(ii) If A is a connected set in a metric space (X, ρ) and $A \subseteq B \subseteq \bar{A}$ then show that B is connected and hence show that \bar{A} is connected. $5+(3+2)$
(c) (i) Let (X, ρ) and (Y, σ) be two metric spaces and $f:(X, \rho) \rightarrow(Y, \sigma)$ be a continuous function. If $K \subseteq X$ is a compact set in (X, ρ) then prove that $f(K)$ is a compact set in (Y, σ). Hence show that a surjection $f:[a, b] \rightarrow C(C \subseteq \mathbb{R})$, where C is not closed in \mathbb{R}, cannot be continuous.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and suppose $\left|f^{\prime}(x)\right|<1$ on \mathbb{R}. Show that f is a contraction map on \mathbb{R}.
(d) (i) Let $f=u+i v$ be a differentiable function on a region $G \subset \mathbb{C}$. If $f(G)$ is a path of a circle in \mathbb{C}, show that f is constant .
(ii) Prove that every non-constant polynomial with complex coefficients has a zero in the field of complex numbers.
(e) (i) Find the Laurent series expansion of $f(z)=\frac{1}{z(z-1)(z-2)}$ in $2<|z|<\infty$.
(ii) By contour integration show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

